Explanation & Argumentation
Consistent Sufficient Explanations and Minimal Local Rules for explaining any classifier or regressor
To explain the decision of any regression and classification model, we extend the notion of probabilistic sufficient explanations (P-SE). For each instance, this approach selects the minimal subset of features that is sufficient to yield the same prediction with high probability, while removing other features. The crux of P-SE is to compute the conditional probability of maintaining the same prediction. Therefore, we introduce an accurate and fast estimator of this probability via random Forests for any data (X, Y) and show its efficiency through a theoretical analysis of its consistency. As a consequence, we extend the P-SE to regression problems. In addition, we deal with non-discrete features, without learning the distribution of X nor having the model for making predictions. Finally, we introduce local rule-based explanations for regression/classification based on the P-SE and compare our approaches w.r.t other explainable AI methods.
Characterizing the risk of fairwashing
Fairwashing refers to the risk that an unfair black-box model can be explained by a fairer model through post-hoc explanation manipulation. In this paper, we investigate the capability of fairwashing attacks by analyzing their fidelity-unfairness trade-offs. In particular, we show that fairwashed explanation models can generalize beyond the suing group (i.e., data points that are being explained), meaning that a fairwashed explainer can be used to rationalize subsequent unfair decisions of a black-box model. We also demonstrate that fairwashing attacks can transfer across black-box models, meaning that other black-box models can perform fairwashing without explicitly using their predictions. This generalization and transferability of fairwashing attacks imply that their detection will be difficult in practice. Finally, we propose an approach to quantify the risk of fairwashing, which is based on the computation of the range of the unfairness of high-fidelity explainers.
Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual Predictions of Complex Models
Shapley values underlie one of the most popular model-agnostic methods within explainable artificial intelligence. These values are designed to attribute the difference between a model's prediction and an average baseline to the different features used as input to the model. Being based on solid game-theoretic principles, Shapley values uniquely satisfy several desirable properties, which is why they are increasingly used to explain the predictions of possibly complex and highly non-linear machine learning models. Shapley values are well calibrated to a user's intuition when features are independent, but may lead to undesirable, counterintuitive explanations when the independence assumption is violated. In this paper, we propose a novel framework for computing Shapley values that generalizes recent work that aims to circumvent the independence assumption. By employing Pearl's do-calculus, we show how these'causal' Shapley values can be derived for general causal graphs without sacrificing any of their desirable properties. Moreover, causal Shapley values enable us to separate the contribution of direct and indirect effects. We provide a practical implementation for computing causal Shapley values based on causal chain graphs when only partial information is available and illustrate their utility on a real-world example.
AR-Pro: Counterfactual Explanations for Anomaly Repair with Formal Properties
Anomaly detection is widely used for identifying critical errors and suspicious behaviors, but current methods lack interpretability. We leverage common properties of existing methods and recent advances in generative models to introduce counterfactual explanations for anomaly detection. Given an input, we generate its counterfactual as a diffusion-based repair that shows what a non-anomalous version should have looked like. A key advantage of this approach is that it enables a domain-independent formal specification of explainability desiderata, offering a unified framework for generating and evaluating explanations. We demonstrate the effectiveness of our anomaly explainability framework, AR-Pro, on vision (MVTec, VisA) and time-series (SWaT, WADI, HAI) anomaly datasets. The code used for the experiments is accessible at: https://github.com/xjiae/arpro.
Utilizing Human Behavior Modeling to Manipulate Explanations in AI-Assisted Decision Making: The Good, the Bad, and the Scary
Recent advances in AI models have increased the integration of AI-based decision aids into the human decision making process. To fully unlock the potential of AIassisted decision making, researchers have computationally modeled how humans incorporate AI recommendations into their final decisions, and utilized these models to improve human-AI team performance. Meanwhile, due to the "black-box" nature of AI models, providing AI explanations to human decision makers to help them rely on AI recommendations more appropriately has become a common practice. In this paper, we explore whether we can quantitatively model how humans integrate both AI recommendations and explanations into their decision process, and whether this quantitative understanding of human behavior from the learned model can be utilized to manipulate AI explanations, thereby nudging individuals towards making targeted decisions. Our extensive human experiments across various tasks demonstrate that human behavior can be easily influenced by these manipulated explanations towards targeted outcomes, regardless of the intent being adversarial or benign. Furthermore, individuals often fail to detect any anomalies in these explanations, despite their decisions being affected by them.
2 Related Work
We propose a post hoc saliency-based explanation framework for counterfactual reasoning in probabilistic multivariate time-series forecasting (regression) settings. Building upon Miller's framework of explanations derived from research in multiple social science disciplines, we establish a conceptual link between counterfactual reasoning and saliency-based explanation techniques. To address the lack of a principled notion of saliency, we leverage a unifying definition of informationtheoretic saliency grounded in preattentive human visual cognition and extend it to forecasting settings. Specifically, we obtain a closed-form expression for commonly used density functions to identify which observed timesteps appear salient to an underlying model in making its probabilistic forecasts. We empirically validate our framework in a principled manner using synthetic data to establish ground-truth saliency that is unavailable for real-world data. Finally, using real-world data and forecasting models, we demonstrate how our framework can assist domain experts in forming new data-driven hypotheses about the causal relationships between features in the wild.
DARE: Disentanglement-Augmented Rationale Extraction
Rationale extraction can be considered as a straightforward method of improving the model explainability, where rationales are a subsequence of the original inputs, and can be extracted to support the prediction results. Existing methods are mainly cascaded with the selector which extracts the rationale tokens, and the predictor which makes the prediction based on selected tokens. Since previous works fail to fully exploit the original input, where the information of non-selected tokens is ignored, in this paper, we propose a Disentanglement-Augmented Rationale Extraction (DARE) method, which encapsulates more information from the input to extract rationales. Specifically, it first disentangles the input into the rationale representations and the non-rationale ones, and then learns more comprehensive rationale representations for extracting by minimizing the mutual information (MI) between the two disentangled representations. Besides, to improve the performance of MI minimization, we develop a new MI estimator by exploring existing MI estimation methods. Extensive experimental results on three real-world datasets and simulation studies clearly validate the effectiveness of our proposed method. Code is released at https://github.com/yuelinan/DARE.
AR-Pro: Counterfactual Explanations for Anomaly Repair with Formal Properties
Anomaly detection is widely used for identifying critical errors and suspicious behaviors, but current methods lack interpretability. We leverage common properties of existing methods and recent advances in generative models to introduce counterfactual explanations for anomaly detection. Given an input, we generate its counterfactual as a diffusion-based repair that shows what a non-anomalous version should have looked like. A key advantage of this approach is that it enables a domain-independent formal specification of explainability desiderata, offering a unified framework for generating and evaluating explanations. We demonstrate the effectiveness of our anomaly explainability framework, AR-Pro, on vision (MVTec, VisA) and time-series (SWaT, WADI, HAI) anomaly datasets. The code used for the experiments is accessible at: https://github.com/xjiae/arpro.
Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual Predictions of Complex Models
Shapley values underlie one of the most popular model-agnostic methods within explainable artificial intelligence. These values are designed to attribute the difference between a model's prediction and an average baseline to the different features used as input to the model. Being based on solid game-theoretic principles, Shapley values uniquely satisfy several desirable properties, which is why they are increasingly used to explain the predictions of possibly complex and highly non-linear machine learning models. Shapley values are well calibrated to a user's intuition when features are independent, but may lead to undesirable, counterintuitive explanations when the independence assumption is violated. In this paper, we propose a novel framework for computing Shapley values that generalizes recent work that aims to circumvent the independence assumption. By employing Pearl's do-calculus, we show how these'causal' Shapley values can be derived for general causal graphs without sacrificing any of their desirable properties. Moreover, causal Shapley values enable us to separate the contribution of direct and indirect effects. We provide a practical implementation for computing causal Shapley values based on causal chain graphs when only partial information is available and illustrate their utility on a real-world example.
Pro-life journalist assaulted on street assigns blame to Democratic rhetoric
'Live Action' journalist Savannah Craven Antao speaks out after being punched by an interviewee on'The Will Cain Show.' Pro-life activist Savannah Craven Antao believes the Democratic Party's recent rhetoric about "punching" at their Republican opponents contributed to the attack that left her bloody during a recent interview. Antao, a young pro-life influencer who was punched in the face by a woman she was interviewing in New York City earlier this month, pointed to Rep. Jasmine Crockett's, D-Texas, recent line about Democrats "punching" as inspiring the attack that happened to her. "She said, 'I think that you punch,'" Antao told Fox News Digital. "'I think you're okay with punching.' So yeah – pretty much just describes the left at this point. They're totally fine with just using force like that to hurt people if they don't agree with them."